SVT (Six Stacked Vertical Transistors) SRAM Cell Architecture Introduction: Design And Process Challenges Assessment


This paper presents a new design architecture for advanced logic SRAM cells using six vertical transistors (with carrier transport along the Z direction), stacked one on top of each other. Virtual fabrication technology was used to identify different process integration schemes to enable the fabrication of this architecture with a competitive XY footprint at an advanced logic node: a unit cell ... » read more

Overcoming Challenges In Next-Generation SRAM Cell Architectures


Static Random-Access Memory (SRAM) has been a key element for logic circuitry since the early age of the semiconductor industry. The SRAM cell usually consists of six transistors connected to each other in order to perform logic storage and other functions. The size of the 6T (6 Transistors) SRAM cell has shrunk steadily over the past decades, thanks to Moore’s Law and the size reduction of t... » read more

SVT: Six Stacked Vertical Transistors


This paper presents a new design architecture for advanced logic SRAM cells using six vertical transistors (with carrier transport along the Z direction), stacked one on top of each other. Virtual fabrication technology was used to identify different process integration schemes to enable the fabrication of this architecture with a competitive XY footprint at an advanced logic node: a unit cell ... » read more

Domain-Specific Memory


Domain-specific computing may be all the rage, but it is avoiding the real problem. The bigger concern is the memories that throttle processor performance, consume more power, and take up the most chip area. Memories need to break free from the rigid structures preferred by existing software. When algorithms and memory are designed together, improvements in performance are significant and pr... » read more

MRAM Evolves In Multiple Directions


Magnetoresistive RAM (MRAM) is one of several new non-volatile memory technologies targeting broad commercial availability, but designing MRAM into chips and systems isn't as simple as adding other types of memory. MRAM isn’t an all-things-for-all-applications technology. It needs to be tuned for its intended purpose. MRAMs targeting flash will not do as well targeting SRAMs, and vice vers... » read more

Hidden Costs In Faster, Low-Power AI Systems


Chipmakers are building orders of magnitude better performance and energy efficiency into smart devices, but to achieve those goals they also are making tradeoffs that will have far-reaching, long-lasting, and in some cases unknown impacts. Much of this activity is a direct result of pushing intelligence out to the edge, where it is needed to process, sort, and manage massive increases in da... » read more

Imec’s Plan For Continued Scaling


At IEDM in December, the opening keynote (technically "Plenary 1") was by Sri Samevadam of Imec. His presentation was titled "Towards Atomic Channels and Deconstructed Chips." He presented Imec's view of the future of semiconductors going forward, both Moore's Law (scaling) and More than Moore (advanced packaging and multiple die). It is always interesting to hear Imec's view of the world sinc... » read more

MPU Vs. MCU


There was a time when microprocessors and microcontrollers were distinct devices. There was never a question as to which one you were dealing with. But changes in the memory architecture have muddied the distinction in modern devices. There are a number of ways in which microprocessors and microcontrollers could possibly be differentiated. But there is no universal agreement as to how that s... » read more

Dealing With Sub-Threshold Variation


Chipmakers are pushing into sub-threshold operation in an effort to prolong battery life and reduce energy costs, adding a whole new set of challenges for design teams. While process and environmental variation long have been concerns for advanced silicon process nodes, most designs operate in the standard “super-threshold” regime. Sub-threshold designs, in contrast, have unique variatio... » read more

Slower Metal Bogs Down SoC Performance


Metal interconnect delays are rising, offsetting some of the gains from faster transistors at each successive process node. Older architectures were born in a time when compute time was the limiter. But with interconnects increasingly viewed as the limiter on advanced nodes, there’s an opportunity to rethink how we build systems-on-chips (SoCs). ”Interconnect delay is a fundamental tr... » read more

← Older posts Newer posts →