Re-Using IP In Packaging


For the past decade, the promise held forth by advanced packaging was that it would allow chipmakers to mix and match analog and digital IP without worrying about the process node at which they were developed or the physical interactions between components. This is a big deal when it comes to analog. Analog IP doesn't benefit from node shrinking the way digital logic does, and in many cases ... » read more

Advanced Packaging Picks Up Steam


The semiconductor industry’s push toward continued miniaturization and increasing complexity is driving wider adoption of system-in-package (SiP) technology. One of the big benefits of [getkc id="199" kc_name="SiP"] is that it allows more features to be squeezed into ever-smaller form factors, such as wearable gadgets and medical implants. So while the individual chips in this package may ... » read more

Challenges For Future Fan-Outs


The fan-out wafer-level packaging market is heating up. At the high end, for example, several packaging houses are developing new fan-out packages that could reach a new milestone and hit or break the magic 1µm line/space barrier. But the technology presents some challenges, as it may require more expensive process flows and equipment like lithography. Fig. 1: Redistribution layers. Source: L... » read more

A Learning Machine For Machine Learning


Artificial intelligence and machine learning are hot. Many, many startups, exciting new applications and lots of venture money. The technology promises to change the world. Whether it’s autonomous vehicles, domestic robots or machines that replace doctors and lawyers, the implications are astounding, and somewhat frightening. Let’s put the socio-economic dimension of this discussion aside f... » read more

Start Your HBM/2.5D Design Today


High-bandwidth memory (HBM) is a JEDEC-defined standard, dynamic random access memory (DRAM) technology that uses through-silicon vias (TSVs) to interconnect stacked DRAM die. In its first implementation, it is being integrated with a system-on-chip (SoC) logic die using 2.5D silicon interposer technology. In June 2015, AMD introduced its Fiji processor, the first HBM 2.5D design, which comp... » read more

Shrink Or Package?


Advanced packaging is rapidly becoming a mainstream option for chipmakers as the cost of integrating heterogeneous components on a single die continues to rise. Despite several years of buzz around this shift, the reality is that it has taken more than a half-century to materialize. Advanced [getkc id="27" kc_name="packaging"] began with IBM flip chips in the 1960s, and it got another boost ... » read more

New BEOL/MOL Breakthroughs?


Chipmakers are moving ahead with transistor scaling at advanced nodes, but it's becoming more difficult. The industry is struggling to maintain the same timeline for contacts and interconnects, which represent a larger portion of the cost and unwanted resistance in chips at the most advanced nodes. A leading-edge chip consists of three parts—the transistor, contacts and interconnects. The ... » read more

2.5D, ASICs Extend to 7nm


The leading-edge foundry market is heating up. For example, GlobalFoundries, Intel, Samsung and TSMC have recently announced their new and respective processes. The new processes from vendors range anywhere from 10nm to 4nm, although the current battle is taking place at 10nm and/or 7nm. In fact, one vendor, GlobalFoundries, this week will describe more details about its previously-announced... » read more

What’s Next In Scaling, Stacking


An Steegen, executive vice president of semiconductor technology and systems at [getentity id="22217" e_name="Imec"], sat down with Semiconductor Engineering to discuss IC scaling, chip stacking, packaging and other topics. Imec is an R&D organization in Belgium. What follows are excerpts of that conversation. SE: Chipmakers are shipping 16nm/14nm processes with 10nm and 7nm technologies... » read more

Tech Talk: System In Package


ASE fellow and senior technical advisor William Chen talks about advanced packaging options and why they are now so important. » read more

← Older posts Newer posts →